Effect of processing techniques on electrical

and thermal properties of 14YWT
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Motivation: Results and Discussion Summary:

Nanostructures Ferritic Alloys (NFAs) are promising candi- e Grain morphology, electrical, and thermal properties of
14YWT processed using Hot Isostatic Pressing (HIP) and
Extruded Rod (ER) were investigated.

dates for Generation IV nuclear reactors due to their remarka-
ble radiation tolerance, high thermal stability, creep resistance,

and high temperature strength. However, the high strength al-

so makes the alloy difficult to form. Recent results indicate o It is observed that the density of grains decreases by in-

that electrically assisted (EA) forming is a suitable tech- creasing the HIP temperature.
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e The thermal conductivity of 14YWT will remain essen-

The attractive properties of NFAs, like 14YWT, are princi- e | ot recolution TEM y tially constant as a function of the heat treatment.
e Bimodal grain distribution was observed as a result of the three processing methods. 1gh resotution Image show-

pally due to the presence of Y-Ti-O containing nano-oxides ing morphology and size distribu- : : : —
. o . . S . : : : : : : Process Avg. grain |Grain density, | Resistivity(~4K)
(NOs) and fine grain size which can immobilize disloca- e The density of grains decreases (bigger grains) by increasing the HIP temperature. tion of Y-Ti-O containing NOs. G ;5 dg wm) |€, (cm) Y (Qcm) Y

tions resulting in greater structural stability and high HIP 850°C  |0.992 11103.33 19.3+0.1
strength. The result is a fine microstructure that has high Electric al Resistivitz g [T O =+ CLE 4+ CE HIP 1150°C (2.131 4692.28 16.90.1
tota g-Z P =P

. . . . . . 1 [ 850C HIP I
dislocation density which result in enhanced resistance to o | M _ e S 0
radiation damage and helium management in NFAs [2]. o0 HIP 850C OO | meeheAmTL L, L s e The grain boundaries and precipitates scatter

HIP 1150C
Extruded rod

ece free electrons that conduct electricity and are re- .
| B Future Work:
" . ] lated by Matthiessen’s rule above at low T.
ogies [3]. Two principal processing techniques were used - e The number density of grains per unit area, &, e The intrinsic resistivity, coefficients due to grain

to obtain the 14YWT sample: Hot Isostatic Pressing (HIP) Extruded Rod : can be estimated simply by 1/ d. boundary (C,) and precipitate (Cp) scattering need to

and Hot extrusion (ER). The purpose of this study is to in- : | S e S S S R B The precipitates &, which exist as a second be calculated using Matthiessen’s rule.

Different processing techniques and the temperatures at

which they are conducted, result in distinct grain morphol-

Rho (MOhm*cm)

Resistivity (uQcm)

vestigate how different processing techniques result in var- ' Temperature (K) phase, are correlated to density of small grains. e [nvestigate etfect of grain size on relative hardness us-

ying grain size and physical properties including electrical 100 200 300 400

e Since the electrons will encounter more grain ing nanoindentation.

resistivity and thermal conductivity. The physical proper- Temp (K) L =p,+JT “

Resistivity of 14YWT varies by processing was fit to the low tem-  boundaries in a metal with smaller grain size, re- e Investigate He embrittlement using ion implantation

perature resistivity data above to obtain
. o intrinsic resistivity, po. Intrinsic resistivi-
mens have higher resistivity presumably ty is needed to calculate GB resistivity

Exp erimenta1° due to grain boundary (GB) scattering. coefficient.

ties will then be used to optimize EA forming process for sistivity contribution due to grain boundaries is ex- and nanoindentation.

pected to be highest for ER 850 °C, followed by
HIP 850 °C, and least for HIP 1150 0C.

. . technique used. Smaller grain size speci-
the desired microstructure. 9 5 P
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Microstructure: FEI Quanta SEM/FIB was used to (Ga* 4
ion) etch and image the grain morphologies.
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Grain size measurement: Exact polygons were used to
obtain the size of the big grains, whereas intercept meth-
od was used for the small grain on FIB micrographs .
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Specific Heat Capacity, C_[Jg'K
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Electrical resistivity measurements: A low-frequency ac
resistance bridge was used to obtain temperature de-
pendent electrical resistivity measurements for tempera-
tures ranging from around 400 K down to ~4K.

Thermal conductivity [W/mK]

B 14YWT-850°C e Thermal conductivity of 14YWT remains essentially constant as a func-
Linear Fit -
O 14YWT-1150"C

--=-= Linear Fit { eThe thermal conductivity of 14YWT has an average value of 24 [W/

Thermal Conductivity measurements : The thermal ex-
pansion coefficient (a) was determined using dilatome-
try. Differential Scanning Calorimeter (DSC) was used to
measure C, of the specimen using the ratio method. The | | | | | | | o

LFA method was utilized to determine the thermal diffu- | 300 | 450 | 00 | 50 | 900 | 1050 ' 1200 | 1350 m.K], which is higher compared to 21 [W/m.K] of contemporary clad- 8 Contact:

sivity, D. The thermal Conductivity is, thus determined Temperature [K] dings made of Zirconium based alloys. Deep Patel (drpatel3@unm.edu) Dept. of Nuclear Eng.
using the a, C,, and D data.

tion of the processing and temperature that changes microstruture .




